
QuLog User Guide

Keith L. Clark and Peter J. Robinson

September 17, 2021

1

Contents

1 Introduction 3

2 QuLog Type system 4
2.1 Type flexibility and runtime type checking 5
2.2 Sub-type relation and modes 5
2.3 Ground terms and modes of use 5

3 Syntax 7

4 Type Declarations 8
4.1 Enumerated Types . 8
4.2 Macro and Union Types . 9
4.3 Code Types . 9
4.4 Default Arguments for Code Types 11
4.5 Doc Strings . 11
4.6 Constraints on Type Declarations 12

5 QuLog Relation Rule Subset 13

6 QuLog Function Rule Subset 20

7 QuLog Action Rule Subset 23

8 General use of the QuLog Interpreter 32
8.1 Starting the interpreter . 32
8.2 Controlling the number of answers given for a relation query 33
8.3 Action calls and commands 36
8.4 Seeing code type declarations 37
8.5 Debugging using watch . 39

9 Advanced Topics 44
9.1 Language Extensions . 44
9.2 Building a Runtime Application 47

2

1 Introduction

QuLog is a flexibly typed hybrid logic, functional, string processing language
with an imperative action language sitting on top. It is higher order in
that named relations, functions and actions can be passed as arguments and
returned as values. The declarative kernel was developed to complement
our robotic agent programming language TeleoR, to provide a TeleoR pro-
grammed robotic agent with its reasoning capability. TeleoR was inspired
by and builds upon Nilsson’s Teleo-Reactive Procedures language.

The relations, functions and actions are all defined by sequences of con-
ditional and unconditional rules. A special class of dynamic relations are
defined solely by facts. Only action rules can call primitive actions of the
language, such as file I/O, thread creation, inter-process communication,
and updates of the dynamic relations. More generally action rules can be
used to program multi-threaded communicating agent behaviour. QuLog’s
static relation and function definitions then comprise the agent’s knowledge.
The dynamic facts record its changing beliefs.

It is a fully integrated language in that function calls can appear as or
inside arguments to relation and action calls, and relational queries can be
used as guards of function and action rules rules. It has sets as a separate
data type from lists with convertors for mapping between the two data types.
Both can be created using Term::Query comprehension expressions.

Sets are manipulated using union, intersection and difference operators.
Lists are manipulated as in Prolog but also using non-deterministic pattern
matching. Similar pattern matching is used for string processing as a pre-
cursor to DCG parsing. An ’in’ primitive can be used to access elements of
sets, lists and characters in strings.

A QuLog agent application typically comprises a set of independent multi-
threaded agent processes each of which has an its own knowledge and beliefs.
The beliefs may be shared, but only if explicitly communicated or placed
in a communal repository. Each agent thread has a name, which is unique
within the agent, and executes some action call. It can atomically query the
agent’s current belief facts using its fixed knowledge. It can also atomically
update these facts using remember and forget actions.

Changing the shared memory of dynamic facts is the main way that an
agent’s threads communicate. However a thread can also asynchronously
communicate with other internal agent threads using send and receive ac-
tions, with receiver and sender identified by their unique thread names.
Each thread has one message queue that only it can access. A sent message,
which is a QuLog data term, is placed at the back of the destination thread’s

3

message queue. A receive primitive allows a thread to search the message
queue from front to back for a message satisfying some test.

The same message send action can be used to send a copy of a mes-
sage to a thread in another agent process. In this case the destination
thread must be identified by a term that gives not only the thread name,
but the agent process name. If the agent is running on a host different
from the one on which the sending agent process is running, the differ-
ent host must also be identified using a destination address of the form
ThreadName:AgentName@HostName. Such inter-agent communication routes
the message via a Pedro communication server. Pedro is companion free
software downloadable from:

https://staff.itee.uq.edu.au/pjr/HomePages/PedroHome.html.
When an agent is launched it typically connects and registers its name,

which must be unique for the host on which it is running, with a Pedro

server. The server may be located anywhere on the internet of hosts reach-
able from the agent’s host machine. A message sent to a thread in another
QuLog process, which has registered with the same Pedro server, is routed
to the other QuLog process which puts it at the back of the message buffer
for the named thread. It is put into a default message handling thread if
the destination address for the message has the form AgentName@HostName,
with no thread name.

Pedro also supports message routing of unaddressed notifications using
lodged subscriptions. This allows multi-casting of a message to any agent
that has lodged a subscription with Pedro that covers the message term. A
QuLog application can also receive and send MQTT notifications routed via
an MQTT publish/subscribe server.

Debugging is done by putting a watch on any number of relations, func-
tions and actions. This invisibly transforms their code to display each call,
the input and output bindings of the unification or match of the call with
each rule that can be used, and optionally the instantiated body of the rule
before it is used. An unwatch command reverses the code transformation.

2 QuLog Type system

QuLog relations and actions are both typed and moded. The modes determine
which argumements must be given as ground terms (terms with no unbound
variables) in calls, and which arguments will be ground if the call succeeds.
Its functions are just typed, as all their arguments must be given as ground
terms. Functions always return ground term values. The types and modes

4

are so that we can guarantee at compile time that there will be no runtime
failures or errors due to wrongly typed arguments, or due to arguments that
must be given not having been computed before the call, particularly calls
to QuLog primitives. We need this to make QuLog (and TeleoR) a serious
agent and robotic programming language. The result of these constraints
is that all but a handful of primitives of QuLog, and most program defined
relations, ground all their arguments if they succeed.

2.1 Type flexibility and runtime type checking

To retain some of the flexility of Prolog we have union (aka disjunctive)
types. For example, using the union type:

def int atom ::= integer || atom

we can specify that a relation r accepts either integers or atoms in some
input argument position. We can then use the runtime type test primitive
to determine which type of value has been given in the call. Typically we
would have two rules for r(int atom,...), one with the test type(A1,int)
and the other with the test type(A1,atom), where A1 is the variable in the
first argument position of the rule head. In QuLog run-time type tests can
be done for any primitive type, any program defined type, as well as any
higher order type.

2.2 Sub-type relation and modes

All QuLog data types are partially ordered by a sub-type relation. For ex-
ample, each of the system data types nat (the non-negative integers), int
(all integers), num (all numbers) is a sub-type of all the types that follow it
in the sequence. At the top of the data sub-type tree is term. Every value
of a primitive type, or a program defined type, is a term, and every value
of the term type is either a value of a system type or a defined type of the
QuLog program being queried.

A sub-type value may be given as an argument where a super-type is
specified. It may also be returned as a value in lieu of a super-type value.

2.3 Ground terms and modes of use

A term that contains no variable is said to be ground. [1,a,-6,"hi"] is a
ground list term of type list(integer || atom || string). The terms
[1,a, U,"hi"] and [1,a,-6,..L] are not ground.

5

The type checker ensures that all function calls are given ground argu-
ments of their declared argument types, and that they will return a ground
value of the declared value type. It checks that each relation and action
call will have each argument an unbound variable, or a term of the declared
type. It also checks that the argument will be a ground term before the call if
moded ! (ground input), and will be ground after the successful evaluation
of the call, if moded ? (ground output). Only if moded with ?? (non-ground
output) is there no check beyond the type check. A @ moded argument is
one where the argument will not be further instantiated by the call.

Relations and actions (defined by one or more rules) have a sub-type
relationship based on this data sub-type relationships and their modes of
use, specified by their moded argument types. For functions the sub-type
relation just depends on argument and value types as there is only one mode
of use - all arguments ground and ground value returned. As an example
of the role of modes, suppose the higher order argument type specifies the
relation given as an argument will only be used to check integer values.
We can pass in a relation that checks or generates number values. A more
flexible check or generate relation that handles numbers can be used where
only integer values will be tested.

QuLog is a fully integrated LP/FP language in that function calls can
appear as or inside arguments to relation calls, and relational queries can be
used as tests in function rules, and in set expression arguments of function
calls.

The compiler does type checking of function, relation and action defini-
tions, assisted by type inference for data terms and variables. We believe
that type declarations, linked with mode of use declarations for relations
and action procedures, are very useful active documentation of the pro-
gram. Also, because we have union types and sub-types, type inference on
code could be very complex in some cases. Type inference on data terms
will assign the term the minimum type in the sub-type lattice.

This user guide assumes familiarity with Prolog and higher order func-
tional programming, as in languages such as Haskell or Scala.

In Section 3 we briefly discuss syntax and in Section 4 we discuss type
declarations. In Section 5 we discuss the relation rule part of QuLog , in
Section 6 we discuss the function rule part and in Section 7 we discuss the
action rule part of QuLog. Lastly, in Section 8 we give examples of using the
QuLog interpreter.

All QuLog and TeleoR program files use the .qlg extension. The QuLog

examples below are nearly all from the file
examples/introduction/qlexamples.qlg

6

3 Syntax

QuLog does not have an operator precedence syntax and its syntax is not
extensible. As in Prolog, a functor or predicate is written immediately next
to its tuple of arguments as in p(...). There is a collection of reserved
words that are used for the builtin operators. There is no need to use a
full stop followed by a white space character, as in Prolog, to separate the
relation rules (aka clauses), function and action rules, type definitions and
type declarations. Instead we borrowed an idea from Python and made
what is a normal program layout format for a Prolog program - each clause
starting on a new line - a syntax requirement.

All the above program statements must begin at the left end of a new
line. Each can be continued over several lines where all but the first line
is indented by at least one space or tab. Starting rules at the left end
of a newline, and indenting a continuation of a rule by several spaces, or
one tab, is normal Prolog program layout. Our indentation indicator for
continuation of a rule encourages this, making programs more readable.
However, as a gesture towards Prolog programmers, including ourselves, a
full stop followed by a newline, or spaces and a newline, may also be used at
the end of a statement. It is ignored by the QuLog parser. Even if you use
fullstops as terminators, you cannot put two clauses or rules on the same
line of the program file.

Apart from requiring a predicate or functor to be adjacent to its (...)

bracketed arguments, and treating a space or tab at the beginning of a new
line as a continuation marker, QuLog is tolerant of spaces. They should be
used to aid readability of the program. To aid in editing QuLog programs
we have supplied an emacs mode and a simple Python/Tkinter based edi-
tor (quled) that uses tab to provide readable code layout and uses syntax
highlighting.

As in Prolog, alphanumeric names beginning with an upper case letter
or underscore , or underscore on its own, are variables. To make such a
name an atom (aka symbol), or the name of a relation or function, it can be
singly quoted as in ’Peter’, ’Father of’, ’Fact’.

In contrast, an alphanumeric name that begins with a lower case letter,
which can contain under-scores, is an atom and is used to denote individual
things or names of relations, functions or actions. Surrounding such a name
with single quotes has no effect at all, and they will be dropped when the
atom is displayed.

One difference in syntax between QuLog and Prolog is that QuLog allows
zero arity compound terms such as empty().

7

The syntax for sets is a sequence of ground terms surrounded by paren-
theses such as {1,2,3}.

Lists and list patterns are as in Prolog but we also allow [H,..T] as
equivalent to [H|T] and [H,..] as equivalent to [H|_].

4 Type Declarations

As discussed in the reference manual QuLog comes with a collection of builtin
types that include the following:

nat, int, num, atom, string, atomic, term,

list(T), set(T)

where the T is a variable used as a type variable providing polymorphic
types. These types can be used in the construction of user defined types.

There are two kinds of type declarations: enumerated, union and macro
types; and code types.

4.1 Enumerated Types

Enumerated type declarations take the form
def LHS ::= RHS
where LHS is either an atom, the name of the type, or a compound term
with distinct type variables as arguments and RHS is an enumeration or a
range of integers.

So, for example,

def man ::= roger | tom | bill | alan | graham | keith |

sam | fred

def woman ::= june | mary | rose | penny | sue | helen |

veronica

def noun ::= "boy" | "fox" | "girl" | "ball" | "man" |

"woman" | "lady"

declares man, woman and noun to be the names of types. The right hand
sides enumerate the possible values of these types.

It’s also possible to have enumerations of numbers as above but also
another common enumeration for integers is to use a range as in

def age ::= 0 .. 110

def digit ::= 0 .. 9

8

In all the above enumerations, all the values are atomic. It it also possible
to have compound terms (constructors) in enumerations as in

def tree(T) ::= empty() | tr(tree(T),T,tree(T))

def noun_phrase_tree::= np(article,noun_exp_tree)

The first declaration above is a recursive polymorphic type declaration.
All the arguments in the constructors on the right hand side must be types
(or type variables listed as arguments on the left hand side).

4.2 Macro and Union Types

Macro type declarations are similar to the above and take the form
def LHS == RHS
but in this case RHS is either a type or a union of types.

A type union is written as
T1 || ... || Tn.

So, for example, following from the above examples

def human == man || woman

def int_tree == tree(int)

In the first example we are declaring human as a macro for the union of
the types man and woman and so man and woman are both subtypes of human.

4.3 Code Types

There are two different uses of code types (for relations, actions and func-
tions): for the declaration of the code; and for specifying an argument of a
relation, fuction or action as a code type.

Instead of using the key word def we use rel, fun and act as in the
examples below.

rel descendant_is(!human,?human)

fun num_children(human) -> nat

act do_parse(!string, ?parse_tree)

The arguments of relation and action declarations are moded types. If
the mode is missing it defaults to !. The arguments of a function declaration
are types - modes are not required as the arguments are always ground.

By listing multiple type declarations for a single relation, function or
action we are actually declaring an intersection type as below (for a user
declared version of append).

9

rel app(!list(!T), !list(!T), ?list(?T)),

app(?list(?T), ?list(?T), !list(!T)),

app(!list(??T), !list(??T), ?list(??T)),

app(?list(??T), ?list(??T), !list(??T)),

app(??list(??T), ??list(??T), ??list(??T))

Below are some examples of using code types as arguments of declara-
tions of other code types.

fun mapF((fun(T1) -> T2), list(T1)) -> list(T2)

rel mapR(!rel(!T1,?T2), !list(T1), ?list(T2))

fun curry(fun(T1,T2) -> T3) -> fun(T1) -> fun(T2) -> T3

We can also declare a special case of rel for dynamic relations using dyn

as below.

dyn child_of(human,human)

These dynamic relations simply store ground facts in the Belief Store and
the intention is to be able to query thse facts and so, for these declarations
we have types (not moded types) as the implicit mode is ? as opposed to !

for functions.
A special case of dynamic relation is what we call “global values” - they

can either be of type int or num. The declaration also initializes the value.
The current value can be accessed using a $ prefix and the value can be
modified by using the operators :=, +:= and -:= as in the examples below.

int a:=0

num b:=0.0

act inc_a(?int)

"Increment the global value a and return the incremented value"

inc_a(N) :: N = $a+1 ∼> a +:= 1

In declaring relations and functions (typically that depend on the belief
store) we can use mrel and mfun instead. The m stands for memoization.
Please refer to the section entitled “Automatic Memoization of Functions
and Relations” in the reference manual for details.

10

4.4 Default Arguments for Code Types

Sometimes it is the case, particularly for actions, that some arguments take
default values. In making such declarations we can use the keyword default

followed by a value of the required type. In such cases all the arguments with
default values must appear at the end and, in use, if an argument is given a
value other than its default then all previous arguments with defaults have
to be also given a value (usually its default value). Below are examples from
the builtin (system) declarations.

act write_list(TermList : !list(@term),

Stream : !stream_type default stdout)

"Write TermList to Stream."

act connect_to_pedro(Host : !atom default localhost,

Port : !int default 4550)

"Connect to the pedro server on Host using Port."

In the second example if the Pedro server on this machine was started
using, say port 5000, then we would need to use

connect_to_pedro(localhost, 5000)

4.5 Doc Strings

Again, we borrow the idea of doc strings from Python where triple quoted
strings can accompany definitions. For us we use single quoted strings that
immediately follow a type declaration as below (and in the examples above).

dyn age_of(H:human,A:age)

"H is a human, A is an age"

fun fact(N:nat) -> nat

"Returns the factorial of N"

def man ::= roger | tom | bill | alan | graham | keith |

sam | fred

"The allowed men in the application"

It is quite common in doc strings to refer to the arguments. We sup-
port this by allowing the type declaration to be preceeded by a variable
with that variable being used in the doc string (as in the examples above).

11

This is purely to aid doc strings and has no semantic implications for the
declarations.

In a similar way that doc string in Python are shown when the user uses
help we use types for displaying user declarations or stypes for displaying
system declarations.

4.6 Constraints on Type Declarations

The constraints on type declarations are discussed in detail in the reference
manual. From the point of view of these constraints we consider the names
of code types as though they are type names. Here we simply list them for
convenience.

• If enumeration of atomics overlap then one must be completely con-
tained in the other.

• Overlaps between constructor enumerated types are not allowed.

• The union of parameterized (polymorphic) types are not allowed.

• Enumerator values (or their functors in the case of constructor enu-
merations) can not be used as the names of types and visa a versa.

The following example, from the reference manual, shows how union
types can be used when we want overlapping types.

def digit ::= 0..9

def range12 ::= 10..20

def range21 ::= -10..-1

def range1 == digit || range12

def range2 == range21 || digit

Now range1 and range2 are essentially the same as the enumerated
types 0..20 and -10..9 without breaking the above constraints.

The more strict constraint on constructor enumerations seems to be ex-
cessively strong but we believe that it will not come up often in practice. If it
does we can define two constructor enumerations with different constructors
and then write a converter relation as in the following example.

def tree(T) ::= empty() | tr(tree(T),T,tree(T))

def tree2(N,L) ::=

leaf(L) | none() | node(tree2(N,L), N, tree2(N,L))

12

rel tree_to_tree2(!tree(T), ?tree2(T, T)),

tree_to_tree2(?tree(T), !tree2(T, T))

tree_to_tree2(empty(), none())

tree_to_tree2(tr(empty(), V, empty()), leaf(V)) :: true

tree_to_tree2(tr(L, V, R), node(L2, V, R2)) <=

tree_to_tree2(L, L2) &

tree_to_tree2(R, R2)

5 QuLog Relation Rule Subset

The definition of a given relation is made up of a contiguous sequence of
relation rules. Relation rules take one of the following forms.

RuleHead
RuleHead <= RuleBody
RuleHead :: RuleGuard
RuleHead :: RuleGuard <= RuleBody

Normally RuleHead is a simple compound term whose functor is the de-
clared name of the relation and with arity that matches the arity of the
corresponding type declaration for the relation. The exception is when we
have a higher-order function whose value is a relation. In this case the
function is defined via relation rules as in the following example.

fun curryR(rel(T1,??T2)) -> fun(T1) -> rel(??T2),

curryR(rel(T1,?T2)) -> fun(T1) -> rel(?T2),

curryR(rel(T1,!T2)) -> fun(T1) -> rel(!T2)

curryR(Rel)(X)(Y) <= Rel(X,Y)

In either case the head arguments are not allowed to include function calls.
Both RuleGuard and RuleBody are conjunctions of relation calls but

that can also include the exists and forall quantifiers. The EBNF in
the appendix of the reference manual gives a more exact description of the
allowed syntax.

QuLog does not include cut and so we use the guards to commit to rules
and so a rule like

p(X) :: q(X) <= r(X)

13

is semantically the same as the equivalent Prolog rule

p(X) :- q(X), !, r(X)

If we wanted to commit to rule with no body we need to write something
like

p(X) :: true

which is semantically the same as the equivalent Prolog rule

p(X) :- !

The examples file examples/introduction/qlexamples.qlg contains
many rules for relations (and functions and actions). We discuss a cross
section of relation definitions in this file below. The definitions of auxilary
relation used below can be found in this file.

First consider

rel person(?human,?gender,?age)

person(H,male,A) <= isa(H,man) & age_of(H,A)

person(H,female,A) <= isa(H,woman) & age_of(H,A)

This is a straightforward definition whose rule bodies are simple conjuctions.
The point of interest here is the call on isa in these rules. This, along with
type, is a way of doing run time type checking. The main difference is that
type is purely a type checker while isa, only used on enumerated or union of
enumerated types, can be used as a generator. Notice the the first argument
of person is of mode ? and so it is expected that the relation should be
able to generate instances of H. If H is a variable at the time of call then
isa(H,man) will, on backtracking, bind H to each value in the enumerated
type. On the other hand, if H is given it will simply check the type of H.

The next example uses both forall and exists.

rel only_has_adult_children(?human)

only_has_adult_children(P) <=

child_of(_,P) &

forall C (

child_of(C,P) =>

exists A (

person(C,_,A) &

A>20

)

)

14

The point of this example is to understand the reasons why there is an
initial call on child of and then another call in left hand side of the body
of forall and why there is an exists in the right hand side of the body.
Both of these have to do with the groundedness of variables.

For both forall and exists we insist that any global variables are
ground at the time of call. Further any variables on the right hand side of
the body of forall that are not global variables (other than) are ground
by the left hand side. Also, the set of global and quantified variables in a
rule are required to be disjoint.

In this example, if we omit the initial call child of(,P) then P in
child of(C,P) is a global variable that is not guaranteed to be ground.
Secondly, if we omit the exists then A would be treated as a global variable.

The call to forall in this case can be read as “for a given human P then
for every child C of P, C has an age A that is greater than 20”.

Since every occurrence of is a unique variable it can be though of as
implicitly existentially quantified. Indeed, we can modify the above code to
replace the inner by an explicitely quantified variable as below.

rel only_has_adult_children2(?human)

only_has_adult_children2(P) <=

child_of(_,P) &

forall C (

child_of(C,P) =>

exists G, A (

person(C,G,A) &

A>20

)

)

The above examples were used to illustrate the constraints on global and
quantified variables. The variant below is simpler and slightly more efficient
and avoids the need to an underscore or extract quantified variable.

rel only_has_adult_children3(?human)

only_has_adult_children3(P) <=

child_of(_,P) &

forall C (

child_of(C,P) =>

exists A (

age_of(C, A) &

A>20

15

)

)

Negation has similar constraints - global variables inside not need to be
ground at call time. The following examples show the use of underscore and
exists inside not in order to satisfy the constraint.

rel childless(?human)

childless(P) <=

isa(P, human) &

not child_of(_,P)

rel has_no_siblings(?human)

has_no_siblings(P) <=

isa(P, human) &

not exists Parent, Sibling (child_of(P, Parent) &

child_of(Sibling, Parent) &

P \= Sibling)

The next example gives an example of set comprehension.

rel children_are(?human,?set((age,human)))

children_are(P, Cs) <=

isa(P,human) & Cs = {(A,C) :: child_of(C,P) & age_of(C,A)}

This set comprehension produces a set of age, human tuples. If we replace
the parentheses by square brackets we would get a list comprehension (of
type list((age,human)).

Set and list comprehension have the same groundedness constraints as
forall and exists and explains why the call isa(P,human) is before the
comprehension. In this case A and C are quantified variables.

We could use set comprehension to produce a slightly less inefficient
version of childless as below.

rel childless(?human)

childless(P) <=

isa(P, human) &

{} = {(A,C) :: child_of(C,P) & age_of(C,A)}

16

Prolog programmers will see set and list comprehension as a variant of
findall, and indeed it is. Python programmers might see this is as similar to
a list comprehension - we chose this syntax to make it look more like Python
so as to be more readable than using something like findall and also to make
it more clear what the quantified variables are.

Python programmers who are not familiar with Prolog might now be
wondering about iterators and generators. We don’t need to do anything
special as backtracking naturally produces one solution at a time as can be
seen in the comparative examples below.

We start with a simple Python example - turning a list into an iterator.
One way to do this is as follows

def list2gen(lst) :

for x in lst:

yield x

Then we could use this to produce a more complex iterator, for example,
with the following expression.

map(lambda x: x**2,

filter(lambda x: x < 8, list2gen([1,6,2,8,5])))

We could then use next to get one value from this iterator at a time
with a StopIteration exception raised when there are no more values.

In QuLog we could simply write

X in [1,6,2,8,5] & X < 8 & Y = X**2

and Y would be instantiated to the first solution. On backtracking Y

would be instantiated to the next solution. When there are no more solutions
we would simply get failure.

Below is a simple example using range to compare an iterator approach
in Python with a backtracking approach in QuLog.

In Python we might write

((x,y) for x in range(5) for y in range (5) if x < y)

whereas in QuLog we might write

range(X, 0, 5) & range(Y, 0, 5) & X < Y & Z = (X, Y)

For those not familiar with Python, the above Python expression is a
generator and we can ask for the next value as in the following example in
the Python interpreter.

17

>>> g = ((x,y) for x in range(5) for y in range (5) if x < y)

>>> next(g)

(0, 1)

>>> next(g)

(0, 2)

>>> next(g)

(0, 3)

Using next is very similar to backtracking to get another solution in the
corresponding QuLog call.

In Python, replacing the brackets with square brackets will produce the
list while in QuLog we would write the equivalent list comprehension:

[(X, Y) ::range(X, 0, 5) & range(Y, 0, 5) & X < Y]

We could use list comprehension for list processing as in the following
example.

[X**2 :: X in [0,1,2,3,4] & p(X)]

where p is a relation and so p(X) is a test on X. However, because this
uses findall, it is less efficient than using straightforward list processing.

With this in mind we have supplied the system defined functions map,
filter and filter_map and so the above example is more efficiently written
as

filter_map(p, square, [0,1,2,3,4])

where square has been defined as the square function.
The next example shows a use of a run-time type check. The intention is

to produce the sum of all the numbers that are in the suplied list of terms.

rel add_nums_of_list_of_any_term(!list(term), ?num)

add_nums_of_list_of_any_term([],0)

add_nums_of_list_of_any_term([N | Rest], Total) ::

type(N,num) <=

add_nums_of_list_of_any_term(Rest, RTotal) &

Total = RTotal+N

add_nums_of_list_of_any_term([_Any | Rest], Total) <=

add_nums_of_list_of_any_term(Rest, Total)

18

Since the first argument is a list of terms then any individual element of the
list may or may not be a number. The type check type(N,num) as a guard
in the second rule guarantees N will be a (ground) number for the body of
the rule. Note that the type check is in the guard and not part of the body.
If it was in the body then, on backtracking the third rule would also be
chosen when N is a number.

The QuLog unification Total = RTotal+N will automatically evaluate
the expression argument RTotal+N. This is because, unlike Prolog, QuLog
evaluates any function calls in arguments of relation calls before evaluating
the relation call.

The next example shows the power of string processing in QuLog. Nor-
mally ++ is the builtin string concatination function (fun string ++ string

-> string) but when used on the right hand side of =? it turns into a (back-
tracking) string splitter. We present two versions of a “tokenizer” for English
sentences with a sentence terminator. The first version uses backtracking to
find words and the second uses regular expressions.

rel words(!string,?list(string))

words(Str,[WStr]) :: Str =? WStr::word(WStr) ++ E::endchar(E)

words(Str,[W|Words]) ::

Str =? W::word(W)++Seps::seps(Seps)++RStr::words(RStr,Words)

rel words2(string, ?list(string))

words2(Str,[WStr]) :: Str =? WStr/"\\w*" ++ _End/"[.?!]"

words2(Str,[W|Words]) ::

Str =?

W/"\\w*" ++

_Seps/"([,;:]?\\s+)|(\\s+)" ++

RStr::words2(RStr,Words)

In the first rule for words we are asking to find a way of splitting the given
string Str into two strings WStr and E such that WStr is a word and E is a
sentence terminator. If we can find such a split then WStr is the last word
of the sentence. In the second rule we see if we can split the sentence into
a word, followed by a string of space characters, followed by the remaining
sentence (which is recursively processed).

As an example of how this backtracking string matching works consider
how the sentence "Hello world!" is processed by this relation.

The first rule is tried but there is no way of splitting up the string into a
word followed by a sentence terminator. The second rule is therefore tried.

19

First W is instantiated to "H" (which is a word and so satisfies the con-
straint word(W)). However no initial part of "ello world!" is a sepa-
rator (whitespace). This causes backtracking and W is now instantiated to
"He". This backtracking continues until W is instantiated to "Hello". Now
Sep is instantiated to " " and we get backingtracking until Seps is instanti-
ated to " ". At this point the remainder of the string, i.e. "world!", is
recursively processed. The first rule (after some internal backtracking) will
match this string.

The second version uses regular expressions. Instead of using :: con-
straints we are using a slash followed by a string representing a regular
expression. Note the need to double up backslashes. Regular expression
matches are deterministic and so they do not create choicepoints.

In general each argument of ++ is one of

VarOrString
VarOrString :: Call
VarOrString / REString
VarOrString / REString :: Call

Often Call is simply a test on Var (which is instantiated to a substring)
as in the first rule of words but can be any arbritrary valid call as in the
second rule of words where it is a recursive call.

As well as backtracking string processing, =? also works on lists where
normally <> is the list appending function but, as with ++, on the right hand
side of =? it turns into a backtracking list splitter. The following example,
on backtracking, splits a list of numbers at pairs that are in order.

rel split_on_ordered_pair(!list(num), ?list(num), ?num, ?num,

?list(num))

split_on_ordered_pair(Lst, LeftLst, V1, V2, RightLst) <=

Lst =? LeftLst <> [V1, V2] :: (V1 < V2) <> RightLst

In general each argument of <> is one of

VarOrListPattern
VarOrStringListPattern :: Call

6 QuLog Function Rule Subset

The definition of a given function is made up of a contiguous sequence of
function rules. Function rules take one of the following forms.

20

RuleHead -> Result
RuleHead :: RuleGuard -> Result

The first of the above forms is a special case of the second where Rule-
Guard is true. A consequence of this is that all the rules are commit-
ted rules, i.e. function calls are deterministic. This is one of the main
differences between function rules and relation rules - relations are non-
deterministic. Another difference is that relation calls can fail whereas func-
tions are not allowed to fail. Instead, if no rules match the function call
then a no_matching_function_rule exception it raised. This is flagging
that we are outside of the domain of the function.

Consider the following definition of the factorial function.

fun fact(N:nat) -> nat

"Returns the factorial of N"

fact(0) -> 1

fact(N) :: N1 = N-1 & type(N1,nat) -> N*fact(N1)

The type check call is required as the type checker deduces the type of N1
is int after the subtraction. Can we avoid this type check call? We could if
we change to the code below.

fun fact2(N:int) -> int

fact2(0) -> 1

fact2(N) -> N*fact2(N - 1)

However, we can give fact2 a negative number and this will lead to infinite
computation. In an attempt to fix this we could add a guard to the second
rule as follows.

fun fact3(N:int) -> int

fact3(0) -> 1

fact3(N) :: N > 0 -> N*fact3(N - 1)

Now the problem is that if we give this function a negative number we will
raise a no_matching_function_rule exception. This is because fact3 is
not a total function on its domain (int).

For the next example we consider converting between lists and ordered
trees. Note that this code does not produce balanced trees.

def tree(T) ::= empty() | tr(tree(T),T,tree(T))

21

fun tree2list(tree(T)) -> list(T)

tree2list(empty()) -> []

tree2list(tr(LT, V, RT)) -> tree2list(LT) <> [V] <> tree2list(RT)

fun list2tree(list(int)) -> tree(int)

list2tree([]) -> empty()

list2tree([H|T]) -> add2tree(H, list2tree(T))

fun add2tree(TT, tree(TT)) -> tree(TT)

add2tree(T, empty()) -> tr(empty(), T, empty())

add2tree(T, tr(L, V, R)) :: T @< V -> tr(add2tree(T, L), V, R)

add2tree(T, tr(L, V, R)) -> tr(L, V, add2tree(T, R))

Recall that <> is the list concatenation function. We use the generic term
ordering @<.

We finish this section by giving three examples of higher order functions
- i.e. functions that take fuctions or relations as arguments. The example
file contains several more such examples.

fun mapF((fun(T1) -> T2), list(T1)) -> list(T2)

mapF(_, []) -> []

mapF(_F, [H|T]) -> [F(H)|mapF(F, T)]

fun curry(fun(T1,T2) -> T3) -> fun(T1) -> fun(T2) -> T3

curry(F)(X)(Y) -> F(X,Y)

fun curryR(rel(T1,??T2)) -> fun(T1) -> rel(??T2),

curryR(rel(T1,?T2)) -> fun(T1) -> rel(?T2),

curryR(rel(T1,!T2)) -> fun(T1) -> rel(!T2)

curryR(Rel)(X)(Y) <= Rel(X,Y)

You will note that in each example we have a compound term with a variable
functor. The type check allows this if the variable functor is known to be a
ground code type as is the case in these examples.

In the second and third examples the head of the rule is a compound
term whose function is itself a compound term. The third function definition
is unusual - it is declared as a function but the rule is a relation rule. This is
because curryR(Rel)(X) is a one argument relation and so when we apply
this to its argument we get a relation call and so we need a relation rule.

22

Please note the complex type declaration for curryR. This intersection
type allows different modes for the second argument that is reflected in the
modes of the resulting relation. This maximizes the flexibility of use of this
function.

7 QuLog Action Rule Subset

Action form the procedural component of QuLog. The definition of a given
action is made up of a contiguous sequence of action rules. Action rules take
one of the following forms.

RuleHead ∼> RuleBody
RuleHead :: RuleGuard ∼> RuleBody

In some cases we might want to write a rule that has no action in the
rule body. In this case {} represents the null action.

As with function rules, actions are deterministic and cannot fail - in this
case a no_matching_action_rule exception will be raised. As discussed in
the reference manual, we constrain the use of ? and ?? moded arguments
for actions as follows.

1. Non-variables are not allowed in ? and ?? moded arguments.

2. Variables that are ! moded are not allowed in ? and ?? moded
arguments.

3. Variables that have already occurred in the body of a rule are not
allowed in ? and ?? moded arguments.

For example, the call

read_term([X])

violates the first constraint. The following rule with the given declaration
violates the second constraint.

act a(!term)

a(X) ∼> read_term(X)

Given the declaration

act read2(??term, ??term)

23

the call

read2(X, X)

violates the third constraint as the second X occurs earlier (in the first
argument).

Typical uses of actions in QuLog are to send and receive messages, update
the Belief Store, manage threads and read and write to streams.

We start by giving examples of updating the Belief Store.

act new_child(!human, !age, !human, !human)

new_child(C, A, M, F) ∼>
remember([child_of(C,M), child_of(C,F), age_of(C,A)])

act birthday(!human)

birthday(P) :: person(P, _, A) & Z = A+1 & type(Z, age) ∼>
forget_remember([age_of(P, A)], [age_of(P, Z)])

birthday(P) ∼> write_list([P,

’ is not a person or would have an invalid age’])

In the first example we use remember to add facts to the Belief Store (similar
to assert in Prolog). In the second we replace an old fact by an updated fact
using forget_remember. This is similar to doing a combination of retract
and assert in Prolog.

Each call to remember, forget and forget_remember is done atomically,
no other thread has either read or write access to the Belief Store until the
update is complete. Also when such a call completes a single update to the
timestamp on the Belief Store is done and this is used in the TeleoR system
to trigger re-evaluation. Furthermore, before the atomic update is complete,
any memoized relation or function (see the reference manual) is checked to
see if their memoized data needs to be cleared and if so, clears the data.

The next example is an action variant of the relational parser in the
examples file. The problem with the relational version is that if the sentence
did not parse then the relational parser would simply fail. For the action
version below we give feedback output. Because output is an action then
this version of the parser needs to be an action.

act do_parse(!string, ?parse_tree)

do_parse(Str,PT) ∼>
to_words(Str,Wrds);

write_list(["Word list: ",Wrds,nl_]);

24

check_dict(Wrds);

write_list(["All words in dictionary",nl_]);

to_parse_tree(Wrds,PT)

act to_words(!string, ?list(string))

to_words(Str,Wrds) :: words(Str,Wrds) ∼> {}

to_words(Str,[]) ∼>
write_list([’Cannot split into words: ’,Str, nl_])

act check_dict(!list(string))

check_dict(Wrds) :: all_dict_words(Wrds) ∼> {}

check_dict(Wrds) ∼>
write_list(["Unknown words in: ",Wrds, nl_])

act to_parse_tree(!list(string), ?parse_tree)

to_parse_tree(Wrds,PT) :: a_parse_tree(PT,Wrds,[]) ∼> {}

to_parse_tree(Wrds,parse_error()) ∼>
write_list([’Cannot parse word list: ’,Wrds,nl_])

First note that the declaration says that the action must produce a ground
term of type parse_tree. Because actions are not allowed to fail, we have
added parse_error() to the type enumeration. The problem with this
implementation is that if either we cannot tokenize the input or some of the
tokenized words are not allowed we continue on to to_parse_tree.

Another option is to declare one or more user declared exceptions and
have the action raise one of these exceptions when a problem occurs as in
the variant below. This also allows us to terminate early (by raising an
exception) as soon as a problem is discovered.

def user_exception ::= cannot_tokenize() |

unknown_words(list(string)) |

cannot_parse(list(string))

act do_parse2(!string, ?parse_tree)

do_parse2(Str,PT) ∼>
try {

to_words2(Str,Wrds);

write_list(["Word list: ",Wrds,nl_]);

check_dict2(Wrds);

write_list(["All words in dictionary",nl_]);

25

to_parse_tree2(Wrds,PT)

}

except {

cannot_tokenize() :: PT = parse_error() ∼>
write_list(["Cannot split into words: ",Str, nl_])

unknown_words(Wrds) :: PT = parse_error() ∼>
write_list(["Unknown words in: ",Wrds, nl_])

cannot_parse(Wrds) :: PT = parse_error() ∼>
write_list(["Cannot parse word list: ",Wrds,nl_])

}

In uses in relation rules forall is used as a test but in action rules it is
used for iteration as in the following example.

act remove_child(!human)

remove_child(C) ∼>
forall P {child_of(C,P) ∼> forget([child_of(C,P)])}

In this example, for a given input child C, we find each parent P of C and
forget the child_of fact.

We complete this section by giving a brief explanation of the code for
a simpler fact data server that can be updated and queried by any num-
ber of QuLog client processes. The code is included near the end of the
qlexamples.qlg file.

Clients may update the server’s facts by adding and removing facts.
They may also query the facts and some of its rule defined relations. We
implement the server using a “repeat/fail” approach. The examples file also
contains a recursive version.

def message_t ::= tell(dyn_term) | deny(dyn_term)

rel may_update(??dyn_term,!agent_handle)

may_update(age_of(_,_),_)

may_update(child_of(_,_),_)

/* We use the may_update definition to restrict updates

to certain agents. In this case all clients are

allowed to update any age_of or child_of fact.

Such rules may be used to allow only certain clients to update

certain relations, even to restrict updates of certain to facts

26

having certain argument values. For example we might want

to restrict updates of child_of(_,P) facts to an agent with

handle P@_ - the agent for the parent P. */

% The following relation has a system type declaration

% rel allowed_remote_query_from(??rel_term,!agent_handle)

allowed_remote_query_from(age_of(_,_),_)

allowed_remote_query_from(child_of(_,_),_)

allowed_remote_query_from(person(_,_,_),_)

allowed_remote_query_from(descendant_is(_,_),_)

allowed_remote_query_from(ancestor_is(_,_),_)

/* Any agent is allowed to query without restriction all the

above relations, but only these relations.

We can be more restrictive by partially instantiating the

relation call templates and/or the agent handle arguments. */

act rf_handle_messages()

rf_handle_messages() ∼>
fork(rf_handle_message(), Name, messages);

set_default_message_thread(Name)

act rf_handle_message()

rf_handle_message() ∼>
repeat {

try {

receive {

tell(Bel) from Ag ::

ground(Bel) & may_update(Bel,Ag) ∼>
write_list(["Remembering: ", Bel, nl_]);

remember([Bel])

deny(Bel) from _ ::

nonvar(Bel) & may_update(Bel,Ag) ∼>
write_list(["Forgetting:",Bel, nl_]);

forget([Bel])

%% special message pattern for query_at calls

%% from a client

remote_query(ID, QueryStr) from_thread AgTh ::

27

nonvar(ID) & nonvar(QueryStr) ∼>
write_list(["Agent thread ", AgTh,"

asked:", nl_,QueryStr, nl_]);

%% builtin action that parses, type

%% checks, evaluates QueryStr and

%% returns answers to Client

respond_remote_query(ID, QueryStr, AgTh)

M from_thread Addr ∼>
write_list(["Invalid message ", M,

" from ", Addr, nl_])

}

}

except {

%% All messages that are received are type checked

%% as a term If the test fails the message is

%% consummed and this exception is raised

input_term_type_error(_, Err) ∼>
write_list(["Message type error: ", Err, nl_])

}

}

First we declare a message_t type so that tell and deny terms will be
accepted as valid messages. Note that the type says that both of these mes-
sages take an argument of type dyn_term that is suitable for remembering
and forgetting.

At the top-level, calling rf_handle_messages will fork a thread using
the root name of the thread as messages. Assuming no other thread is
named messages then Name will be instantiated to messages. We set this
thread to be the thread that will receive agent messages - i.e. messages sent
using to where the sender doesn’t specifier the receiver thread. The created
thread will call rf_handle_message.

The top-level of rf_handle_message uses a repeat that causes the thread
to repeatedly call the inner action which is a try-except action. We use
this in case a client sends a message that is not of type term, which causes
an input_term_type_error exception to be raised.

Inside the try we call the receive action which contains a collection
of message/address patterns (with an optional guard) and an action. The
semantics of the use of receive in this example is as follows.

The call first blocks waiting for a message to arrive. When it does it

28

checks that the message has type term and if not raises an exception. If
it is a tell(Bel) message it checks if the message is ground and that the
sender of the tell is allowed to update the Bel fact update by querying the
may_update relation. If so it prints a message and remembers the sent belief.
If instead it is a deny(Bel) message, it checks that Bel is a non-variable, and
that the sender may do the update. If so it prints a message and forgets the
belief. If the message is a remote_query message then a message is printed
and the server parses, evaluates the query whilst checking that for each
relation call Call in the query that the querying client is allowed to query the
relation of Call in that way by using the allowed_remote_query_from rules
in the server. If every call is allowed, it sends back the query answers to the
client as a stream of strings. All this is done by the respond_remote_query.
If any call in the remote query has no answers, or is not an allowed call for
the client which sent the remote query, no answers are returned - a query
failure.

Although not used in this case, a receive action can have an optional
timeout as the last choice and has the form

timeout Time ∼> Action

If no message that matches any of the receive choices has arrived within
Time seconds of the call start then Action will be called.

Note that the use of ground and nonvar in the first two choices are
necessary as remember requires a ground dyn_term and forget requires a
non-variable and hence a dyn_term pattern.

Because receive rejects messages that do not type check it is important
that the client and server agree on types otherwise a message term that type
checks on the client side might not type check on the servr side and so the
message will be rejected. This suggests that the programmer should use
a common ontology for both clients and server. One way to do this is to
create a file that contains all declarations that are common to both clients
and server and consult this file within both the client and server program
files.

We now look at examples of sending client messages to the server using
the QuLog interpreter - we look the general functionality of the interpreter in
more detail in section 8. We assume both the client and server have consulted
qlexamples.qlg, and that the server is running on the same machine as the
client and has process name server.

| ?? (A :: age_of(june, A)) query_at server.

29

A = 23 : age

| ?? deny(age_of(june, _)) to server.

success

| ?? tell(age_of(june, 24)) to server.

success

| ?? (A :: age_of(june, A)) query_at server.

A = 24 : age

The first query is an example of remote querying. We are asking the
server to find all solutions for the variable A in age_of(june, A). The server
returns the list of answers and the client binds A to the first answer and then,
on backtracking, binds A to the next solution. The result is the same as the
query age_of(june, A) in the server.

The second message causes the server to forget age_of(june, 23) while
the third message causes the server to remember age_of(june, 24). The
final remote query confirms this change has been made.

Note that we could also use to_thread as below

| ?? tell(age_of(june, 24)) to_thread messages:server.

However, query_at is an agent message rather than a thread message -
a special case of to.

A multi info server example

The directory qulog/examples/introduction/info_broker there are pro-
gram files for a simple multi sensor information server application. There
are two base level sensor information servers, but there can be many more.
Acting as an optional query interface to these sensor information servers is
a broker agent. The broker agent and the information servers have a shared
ontology of three relations describing rooms in a building. The relations
give the room temperature, the open or closed status of the room’s doors,
and which people are in the room.

In the information servers, the rules for the common ontology relations
just query dynamic relation facts. For example:

30

temperature(L,T) <=

temp_info(L,T)

where temp info is a dynamic relation.
The dynamic relation facts in each information server are being fre-

quently updated by a Python sensor process. In the example you will inter-
act with the Python sensor processes to provide the sense data, but in a real
application this Python process would be harvesting readings from sensors
in the rooms, sending each changed reading as a message to the information
server for which it is the data provider. On receipt of the new reading mes-
sage the dynamic fact recording the new reading is immediately updated
by the information server. So repeated remote queries to the information
server return different answers at different times, even though the queries
are to ’static’ rule defined relations.

The broker agent does not store sensor data. Its dynamic data comprises
facts such as:

info_source(temperature, sensor_server1)

giving meta information about which sensor servers are active and may be
queried about temperatures. The broker agent’s rule defining temperature

is:

temperature(Loc, Temp) <=

info_source(temperature, Server) &

temperature(Loc, Temp) query_at Server

This maps a query about temperature to remote queries to each of the
sensor servers currently beleived to be an info source for temperature,
i.e. which will have temperature readings for rooms recorded as temp info

dynamic facts.
In the info_broker directory is a README file giving instructions of

how to deploy and query this multi-server toy application.

Guarded actions

The action receive of the fact server message handling loop uses a form of
guarded actions - in this case the guard is a message pattern together with
a test. QuLog supports two other forms of guarded action actions: case and
wait_case.

The first of these has the form

31

case {

Guard1 ∼> Action1
...

Guardk ∼> Actionk
}

This is similar to a cascading if-then-else in Prolog. If Guardi is the
first guard that is true then Actioni will be called. If no guards are true an
action_failure exception will be raised.

The second of these has the same form and is a generalization of the
wait action.

wait_case {

Guard1 ∼> Action1
...

Guardk ∼> Actionk
}

The semantics is the same as for case except that if none of the guards
are true then wait_case waits until the Belief Store has changed and then
re-tests the guards. It only makes sense to use wait_case if the guards
either directly or indirectly depend on the Belief Store.

As with receive, wait_case can have an optional timeout as the last
choice.

8 General use of the QuLog Interpreter

The QuLog interpreter is essentially the same as a Prolog interpreter - queries
are entered and the interpreter responds by calling the query and displaying
answers. There are some differences, most notably is that the QuLog inter-
preter carries out type and mode checking on each query (in a similay way
to when it checks the body of a rule).

8.1 Starting the interpreter

To start the interpreter, assuming paths have been set up, we simply need
to use the command

qulog

In many uses of QuLog we want to use Pedro for communication and so
the simplest way to do this is instead use the command

32

qulog -A Name

where Name is the name we want to give to this process. This will
connect us to Pedro and tell Pedro that this is the name of this process. If
that name, on this machine, is already in use interpreter will produce an
error message and terminate.

In the examples below we will assume we are in the same folder as
qlexamples.qlg

Once we have started the interpreter we will get the prompt | ?? and
we can consult the example file in the same way as in Prolog

| ?? [qlexamples].

or

| ?? consult qlexamples.

All queries, like in Prolog, are terminated by a fullstop, linefeed.
If the file contains syntax or type errors we can modify and save the file

and consult again - this is really a re-consult. Note that files we consult can
contain consults themselves. These files are consulted and checked before
the main file is consulted. The reference manual gives details about how
reconsulting works when either the main file or a sub-file is edited.

Assuming the file of interest has been successfully consulted we can then
enter queries. In the QuLog interpreter queries are either a conjuction of
relation calls or a sequence of action calls. The interpreter does not allow a
mixture.

8.2 Controlling the number of answers given for a relation
query

We start with a simple example (a comment has been added to the inter-
preter interaction to highlight a particular line).

| ?? age_of(P,A).

P = roger : man

A = 110 : age

...

P = tom : man

A = 26 : age

...

33

P = june : woman

A = 23 : age

...

P = bill : man

A = 40 : age

...

P = mary : woman

A = 40 : age

.. %% Note .. was entered by user

P = rose : woman

A = 40 : age

...

P = penny : woman

A = 1 : digit

Unlike in Prolog where answers are printed one at a time and a semi-colon
is used to get the next answer, in qulog interpreter the first five answers are
printed and a .. is used to get the next batch of answers. Notice that the
interpreter displays the inferred type next to each answer term.

We can change the number of answers produced at a time as follows using
the special interpreter query action set_num_answers. This, and several
queries below, are only for use in the interpreter and is not available for use
in rules.

| ?? set_num_answers(3).

success

| ?? age_of(P,A).

P = roger : man

A = 110 : age

...

P = tom : man

A = 26 : age

...

P = june : woman

A = 23 : age

We can set the number of solutions back to the default:

34

| ?? set_num_answers(5).

success

We can constrain the query in a couple of ways as illustrated below. Say
we wanted to know the people who have ages over 39 then we could use the
query

P = roger : man

A = 110 : age

...

P = bill : man

A = 40 : age

...

P = mary : woman

A = 40 : age

...

P = rose : woman

A = 40 : age

What if we didn’t care about the age and didn’t want to clutter the
interpreter output with this information then we use either of the following
queries.

| ?? P :: age_of(P,A) & A>39.

P = roger : man

...

P = bill : man

...

P = mary : woman

..

P = rose : woman

| ?? exists A age_of(P,A) & A>39.

P = roger : man

...

P = bill : man

...

P = mary : woman

35

...

P = rose : woman

What if we wanted the answers to this particular query to appear two
at a time but didn’t want to globally change the number of answers printed.
The following query will do.

| ?? 2 of P :: age_of(P,A) & A>39.

P = roger : man

...

P = bill : man

.. %% user input

P = mary : woman

...

P = rose : woman

..

no more solutions

8.3 Action calls and commands

One or more action calls (separated by ;), or a single interpreter command,
may be entered in response to the query prompt. Remember the action calls
are deterministic and so an entered action call sequence will give exactly one
answer binding for its variables, or produce an exception.

| ?? do_parse2("the fat lady sings!", PT).

Word list: ["the", "fat", "lady", "sings"]

All words in dictionary

PT = s(np("the", ne("fat", n("lady"))), v("sings")) : parse_tree

success

The first two lines of output are produced by the action call. The last
two lines are produced by the interpreter.

We can’t call functions directly but we can turn them into a relational
query by using an = query as below.

| ?? X = curry(+).

X = curry(+) : term_naming(fun(int) -> fun(int) -> int &&

fun(num) -> fun(num) -> num &&

36

fun(nat) -> fun(nat) -> nat)

| ?? X = curry(+)(2).

X = curry(+)(2) : term_naming(fun(int) -> int &&

fun(num) -> num &&

fun(nat) -> nat)

| ?? X = curry(+)(2)(3).

X = 5 : digit

Note the types in the first two examples. The answer terms are terms
that name functions and the type of each of these functions are intersection
types - i.e. can can be used in multiple situations.

8.4 Seeing code type declarations

We can list both system types and user types using, respectively, stypes and
types. Without arguments these will list all types. We can follow these with
a comma separated list of atoms. The interpreter will respond by listing all
types whose name includes one of the supplied atoms. For example

| ?? stypes line, term.

act get_line(Line : ?string, Stream : !stream_type default stdin)

"Read Line from Stream"

act put_line(Line : !string, Stream : !stream_type default stdout)

"Write Line to Stream"

rel copy_term(Term : @term, Copy : ??term)

"Copy Term with all variables in Term replaced by fresh variables."

act read_term(??term, Stream : !stream_type default stdin)

"Unifies its argument with the next term denoted by the next

sequence of characters in the stream followed by fullstop, return."

rel string2term(String : !string, Term : ??term)

37

"String is a string comprising the character sequence of a QuLog

term.

Term is unified with that term."

rel term2string(Term : @term, String : ?string)

"Term is converted to String - the string representation of the term."

success

| ?? types curr.

fun curry(fun(T1, T2) -> T3) -> fun(T1) -> fun(T2) -> T3

"Curried form of F"

fun curryR(rel(T1, ??T2)) -> fun(T1) -> rel(??T2),

curryR(rel(T1, ?T2)) -> fun(T1) -> rel(?T2),

curryR(rel(T1, !T2)) -> fun(T1) -> rel(!T2)

fun uncurry(fun(T1) -> fun(T2) -> T3) -> fun(T1, T2) -> T3

fun uncurryR(fun(T1) -> rel(!T2)) -> rel(T1, !T2),

uncurryR(fun(T1) -> rel(?T2)) -> rel(T1, ?T2),

uncurryR(fun(T1) -> rel(?T2)) -> rel(T1, ?T2),

uncurryR(fun(T1) -> rel(??T2)) -> rel(T1, ??T2)

success

| ?? types tree2.

def tree2(N, L) ::= leaf(L) | none() |

node(tree2(N, L), N, tree2(N, L))

rel on_tree2(?tree_val(N, L), !tree2(N, L))

act to_parse_tree2(!list(string), ?parse_tree)

fun tree2list(tree(T)) -> list(T)

rel tree_to_tree2(!tree(T), ?tree2(T, T)),

tree_to_tree2(?tree(T), !tree2(T, T))

success

Similar to types, we can also show user code definitions using show as
follows. This is similar to listing in Prolog. Note that both the type
declaration and any "...." quoted comment string are displayed, along
with the defining rules.

| ?? show age_. % This will show defs for all code beginning with age_

38

dyn age_of(H : human, A : age)

"H is a human, A is an age"

age_of(roger, 110)

age_of(tom, 26)

age_of(june, 23)

age_of(bill, 40)

age_of(mary, 40)

age_of(rose, 40)

age_of(penny, 1)

success

| ?? show inc.

act inc_a(?int)

"Increment the global value a and return the incremented value"

inc_a(N) ::

N = $a + 1 ∼>
a +:= 1

fun inc(nat) -> nat

inc(N) -> N + 1

success

8.5 Debugging using watch

We finish the section on the interpreter with a discussion on debugging. For
debugging Prolog code we often use trace. This can be very frustrating
as we will often sufer from information overload but, even worse, we might
accidentally use skip when we should have continued to use creep causing
us to start again.

In QuLog we have tried to make debugging simpler. Here is a relation
definition in the qlexamples.qlg file.

rel only_has_adult_children(?human)

only_has_adult_children(P) <=

39

exists C child_of(C,P) &

forall C (

child_of(C, P) =>

exists A age_of(P, A) & A > 20)

It can be used for both finding the humans who have one of more children
but all are above the age of 20, or for checking if a given human has that
property.

We can watch its use by entering the command

| ?? watch only_has_adult_children.

success

If we do a show only has adult children we will see the same single
rule definition but when we query the relation we get information about its
use.

| ?? only_has_adult_children(P).

1:only_has_adult_children(P)

Call 1 unifies rule 1

output none

Rule body is:

child_of(_, P) &

forall C_0 (

child_of(C_0, P) =>

exists A_0 age_of(P, A_0) & A_0 > 20)

1:only_has_adult_children(roger) succeeded

P = roger : man

1:only_has_adult_children(P) seeking another proof

1:only_has_adult_children(roger) succeeded

...

P = roger : man % Answer roger given again

1:only_has_adult_children(P) seeking another proof

1:only_has_adult_children(mary) succeeded

...

P = mary : woman

40

1:only_has_adult_children(P) seeking another proof

1:only_has_adult_children(bill) succeeded

...

P = bill : man

1:only_has_adult_children(P) seeking another proof

1:only_has_adult_children(rose) succeeded

...

P = rose : woman

.. % .. entered to request more answers if there are any

1:only_has_adult_children(P) seeking another proof

no (more) proofs using rule 1 trying next rule for call 1

1:only_has_adult_children(P) no (more) proofs

no more solutions

Ideally we would not get roger given as an answer twice. The suspi-
cian is that it might be multiple solutions to the test or generate condition
child of(,P) giving P=roger twice. The use of the anonymous variable
indicates we are not interested in knowing the child of P.

We can add a watch on the relation child of and repeat the query:

watch child_of.

| ?? only_has_adult_children(P).

1:only_has_adult_children(P)

Call 1 unifies rule 1

output none

Rule body is:

child_of(_, P) &

forall C_0 (

child_of(C_0, P) =>

exists A_0 age_of(P, A_0) & A_0 > 20)

2:child_of(A, P)

Call 2 unifies rule 1

output P = roger A = tom

% First proof of child_of(A,P) with P=roger

No rule body

2:child_of(tom, roger) succeeded

3:child_of(C_0, roger)

Call 3 unifies rule 1

41

output C_0 = tom

No rule body

3:child_of(tom, roger) succeeded

3:child_of(C_0, roger) seeking another proof

no (more) proofs using rule 1 trying next rule for call 3

Call 3 unifies rule 2

output C_0 = june

No rule body

3:child_of(june, roger) succeeded

3:child_of(C_0, roger) seeking another proof

no (more) proofs using rule 2 trying next rule for call 3

3:child_of(C_0, roger) no (more) proofs

1:only_has_adult_children(roger) succeeded

P = roger : man

1:only_has_adult_children(P) seeking another proof

2:child_of(A, P) seeking another proof

no (more) proofs using rule 1 trying next rule for call 2

Call 3 unifies rule 2

output P = roger A = june

% Second proof of child_of(A,P) with P=roger again

No rule body

2:child_of(june, roger) succeeded

4:child_of(C_0, roger)

Call 4 unifies rule 1

output C_0 = tom

No rule body

4:child_of(tom, roger) succeeded

4:child_of(C_0, roger) seeking another proof

no (more) proofs using rule 1 trying next rule for call 4

Call 4 unifies rule 2

output C_0 = june

No rule body

4:child_of(june, roger) succeeded

4:child_of(C_0, roger) seeking another proof

no (more) proofs using rule 2 trying next rule for call 4

4:child_of(C_0, roger) no (more) proofs

1:only_has_adult_children(roger) succeeded

...

P = roger : man

42

.

.

.

To avoid the repeated answers for any parent that has more than 1
child we can change the definition of only has adult children replacing
the condition child of(,P) by the condition has a child(P) where

rel has_a_child(?human)

has_a_child(P) <=

isa(P,human) &

% When P needs to be found, generate in turn names of humans

once(child_of(_,P))

% Then check, once only, if they have a child

We now get the answer P=roger just once.

| ?? only_has_adult_children2(P).

P = roger : man

...

P = bill : man

...

P = mary : woman

...

P = rose : woman

As a final version of the definition for the relation only has adult children

we replace the use of the child of condition in the forall check by a call
to the function age.

fun age(human) -> age_val

age(P) :: age_of(P,A) -> A

age(_) -> 0

% 0 is used as the default age if none is recorded

rel only_has_adult_children3(?human)

only_has_adult_children3(P) <=

has_a_child(P) &

% This will generate one at a time all humans with at least one child

forall C (

child_of(C,P) => age(P) > 20

)

43

We can also watch a function evaluation.

watch age.

| ?? only_has_adult_children3(P).

1 : age(roger) (matches rule 1)

1 : age(roger) -> 110

1 : age(roger) <- 110

2 : age(roger) (matches rule 1)

2 : age(roger) -> 110

2 : age(roger) <- 110

P = roger : man

3 : age(bill) (matches rule 1)

3 : age(bill) -> 40

3 : age(bill) <- 40

...

P = bill : man

4 : age(mary) (matches rule 1)

4 : age(mary) -> 40

4 : age(mary) <- 40

...

P = mary : woman

5 : age(rose) (matches rule 1)

5 : age(rose) -> 40

5 : age(rose) <- 40

...

P = rose : woman

9 Advanced Topics

In this section we look at two advanced topics: extending QuLog by accessing
the Qu-Prolog and C levels; and building a runtime application.

9.1 Language Extensions

Currently QuLog includes only a core subset of Qu-Prolog functionality. It
is our intention to include more functionality as the need arises but, in the
meantime, it is easy to “lift” Qu-Prolog functionality to QuLog for a spe-
cific application as describle below. Given Qu-Prolog has a foreign function

44

interface to the C-level, this means a QuLog application can also access the
C-level.

The first question the programmer needs to ask is “Am I lifting func-
tionality as a relation, function or action?”. The answer to this question
determines the required approach. Remember that any functionality that
is stateful needs to be lifted as an action. Because QuLog cannot check
the various requirements imposted on definitions, for example modes and
types, it is the programmers responsibility to make sure these requirements
are met. The extra requirements on actions are given later. The examples
given below can be found in lift_eg.qlg and lift_eg_support.ql in the
examples/introduction folder.

The easiest of these to lift are relations. As an example consider listing
gmtime which is a predicate for converting between seconds since the Unix
epoch and the GM time structure. We consider the simplest case first -
when the programmer wants to use the same name with the arguments in
the same order and having the same types and modes. In this case, because
we have a time data structure we declare this type as well as the relation
type as below. This is all that is required to lift this predicate.

def time_t ::= time(nat, nat, nat, nat, nat, nat)

rel gmtime(!nat, ?time_t), gmtime(?nat, !time_t)

and then calling gmtime at the QuLog level (after type and mode check-
ing) will simply call the Qu-Prolog predicate.

For various technical reasons we do not support lifting of functions: we
have compiled in declarations that allow user defined functions to be used
in higher order functions and we also compile in an extra rule that raises an
exception in case the function would otherwise fail. Instead the approach
that should be taken is to lift a relational version of the function and then
define the required function in terms of this relation. So, for example, we
want the function to delete an element from a list. Qu-Prolog already has
the delete predicate defined and so we can lift that to the QuLog level by
simply declaring the type:

rel delete(!T, !list(T), ?list(T))

and then defining the required function in terms of this relation:

fun deleteF(T, list(T)) -> list(T)

deleteF(Item, List) :: delete(Item, List, Result) -> Result

45

We can’t use delete as the name of the function as it will get compiled
into a delete/3 predicate which conflicts with the builtin predicate.

In fact any relation that has exactly one argument in ? mode and all the
other arguments in ! mode can be turned into a function using the above
approach.

Lifting actions require more effort. The main problem is that actions are
deterministic and are not allowed to fail. A given Qu-Prolog predicate that
we might want to lift might be non-deterministic and typically might fail
under certain situations. It might also throw exceptions. We therefore need
to consider how these situations need to be handled and write Qu-Prolog
code to take this into account.

It is often the case that we might want to use the same name as the
Qu-Prolog predicate and so we need to map the name at the QuLog level to
the support code at the Qu-Prolog level.

For an example we consider the TCP support Qu-Prolog provides and
look at the process of lifting this support. For this example we will only
consider tcp_server.

The first thing to notice is that many of these predicates have a socket
as an argument and that is an integer at the Qu-Prolog level. To provide
better type checking we fist declare a socket type:

def socket_t ::= socket(nat)

We can then make the declaration for the action (noting that we can use
default arguments).

act tcp_server(Socket:?socket_t, Port:!nat default 0,

Host:!atom default localhost)

"Create a Socket for a tcp_server for the given Port and Host"

Since the TCP predicates can raise exceptions we should trap them and
turn them into QuLog exceptions by declaring the user exceptions:

def user_exception ::= tcp_exception(string)

The support code at the Qu-Prolog level is then

?-assert(qulog2qp_map(tcp_server(Socket, Port, Host),

tcp_server_interface(Socket, Port, Host))).

tcp_server_interface(Socket, Port, Host) :-

catch(tcp_server(Socket, Port, Host), Pattern,

46

handle_exception(Pattern)), !.

%% convert the QuProlog exception to the corresponding Qulog exception

%% where the argument is a string representation of the QuProlog exception

handle_exception(Pattern) :-

open_string(write, Stream),

write_term_list(Stream, [Pattern]),

stream_to_string(Stream, Str),

throw(tcp_exception(Str)).

The asserted fact qulog2qp_map is used by the QuLog compiler to replace
the QuLog call by the Qu-Prolog level version of the call.

To access the C-level we use the Qu-Prolog foreign function interface to
define predicates that call the C-level. Once this is done we simply follow
the approach above to lift that Qu-Prolog interface code to the QuLog level.

The folder examples/ev3 contains a simple example using a Mindstorm
EV3 robot. The C-code is specific to this application but is realatively easy
to modify for other applications.

The folder examples/ROS contains a foreign-function interface to ROS:
ROS messages are assumed to be strings representing Prolog terms and are
placed in the message buffer of the thread that started the ROS interface.

9.2 Building a Runtime Application

Typically we develop an application using the interpreter for experimenting
and testing. Often we subsequently want to deploy the application as a
runtime application - i.e. it can be started from the command line and does
not require the interpreter.

The bin folder contains the Python program qulogc that takes a .qlg

file and translates the file to the corresponding .ql file and then, if requested,
compile the program to a runtime application.

The default call is

qulogc application

that will, assuming the program type checks, translate the program ap-
plication.qlg to application.ql and then compiles that to a runtime appli-
cation.

The default is that the program is a Teleor program and is to be used
as a runtime application and so needs a definition of qmain - the same as the

47

Qu-Prolog main definition. If the application is not a Teleor application but
instead is a QuLog application then a -Q switch can be used. If the translated
code is intended to be used as library code for a Qu-Prolog application then
a -L switch should be used and qmain should not be defined.

So, for example, if we wanted to translate the QuLog program qapp.qlg

and compile it as a runtime application we would use

qulogc -Q qapp

On the other hand, if we wanted to translate the QuLog program lib.qlg

as a library file (but not compile it) we would use

qulogc -Q -L lib

48

	Introduction
	QuLog Type system
	Type flexibility and runtime type checking
	Sub-type relation and modes
	Ground terms and modes of use

	Syntax
	Type Declarations
	Enumerated Types
	Macro and Union Types
	Code Types
	Default Arguments for Code Types
	Doc Strings
	Constraints on Type Declarations

	QuLog Relation Rule Subset
	QuLog Function Rule Subset
	QuLog Action Rule Subset
	General use of the QuLog Interpreter
	Starting the interpreter
	Controlling the number of answers given for a relation query
	Action calls and commands
	Seeing code type declarations
	Debugging using watch

	Advanced Topics
	Language Extensions
	Building a Runtime Application

